Power 2020

A plan to best meet GRU's obligation to the reliability of the bulk electric system (BES) of The State of Florida and best serve the needs of GRU's customers.

> Item #130957 Regional Utilities Committee September 11, 2014

Power 2020 will Consider:

- Seasonal, daily and hourly customer demand
- Future regulatory (EPA, NERC) constraints
- GRU generation assets
- The GRU transmission & distribution systems
- Current purchase power obligations (GREC)
- Future purchase power opportunities
- Distributed Energy Resources (DER)
- Demand side load management
- Asset aggregation


What is significant about 2020?

- Not so far out on the planning horizon that dealing with ramifications can be delayed
- Far enough out on the planning horizon that there is time for action
- GRU's current coal transportation contract runs out on December 31, 2019 and the "as delivered" cost of coal will likely increase
- EPA Existing Source Performance Standard (ESPS)/CO₂ Building Blocks #1 & #2 Compliance Year

Current & Evolving Situation Demand Characteristics

GRU Demand August 5, 2013

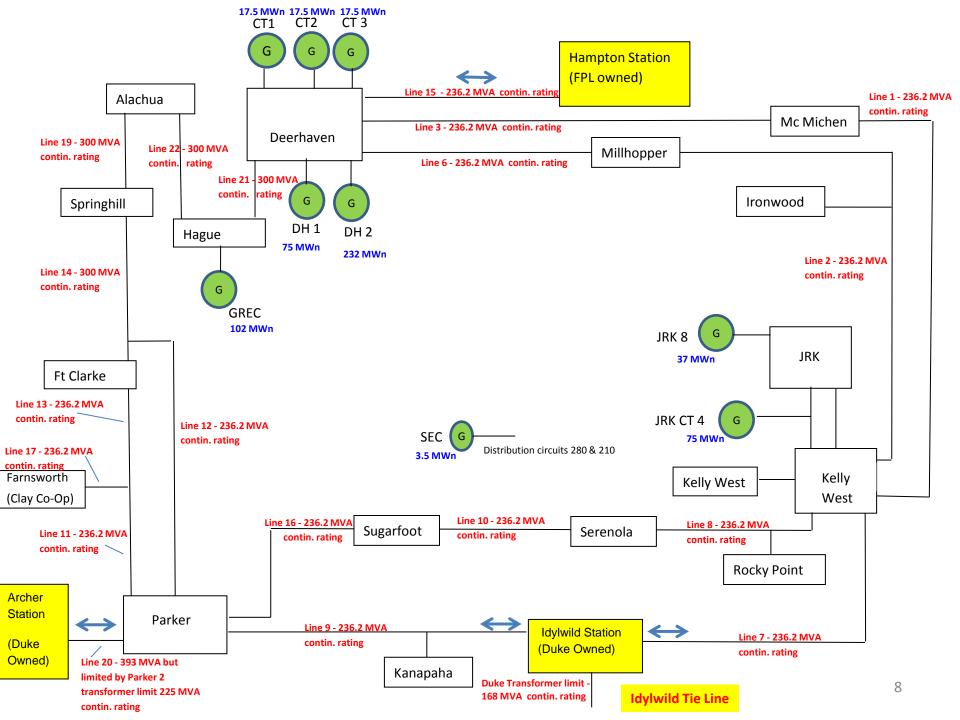
Current & Evolving Situation Generation

(in GRU Service Territory; GRU + GREC + DER)

- GRU is currently long in base load generation beyond the planning horizon
- DH 2 required to perform intermediate service
 - Deep load cycling
 - Seasonal cold standby (CSB)
 - Gas -vs- coal price dependent
- EPA ESPS/ CO₂ Emissions from Power Plants
 Potential Off/On Cycling of Deerhaven 2
- Increasing intermittent distributed generation (solar)

Current & Evolving Situation Generation

<u>Plant / Unit</u>	Primary <u>Fuel</u>		Net Summer <u>Capability (MW)</u>
GREC	Waste Wood		102.5
J R Kelly Combine Cycle 1	Natural Gas		112.0
Deerhaven Generating Station ST 2	Coal	Base Capacity	<u>232.0</u> 446.5
Deerhaven Generating Station ST 1 Deerhaven Generating Station	Natural Gas	Intermediate Capacity	75.0
CT 3	Natural Gas		<u>75.0</u> 1 50.0
Deerhaven Generating Station CT 1 Deerhaven Generating Station	Natural Gas		17.5
CT 2	Natural Gas	Peaking Capacity	<u>17.5</u> 35.0
South Energy Center	Natural Gas	Total Capacity	<u>4.1</u> 635.6


Note: All time Peak Load was 484 mw, served in 2007

Current & Evolving Situation Transmission

- Three GRU ties with Duke, one with FPL
- Option to serve load with imported power
 - Existing ties will not reliably support serving load solely by imported power
 - Above 375 MW load, loss of one tie would overload GRU and FPL or Duke
 - Currently must have generation in GRU service territory

Current & Evolving Situation Distributed Generation

- Solar generation in GRU's service territory will continue to increase
 - Intermittency requires quicker system generation response to follow load
- Expectation that other forms of DER will enter the mix
 - Fuel cells? ...Wind?
- Potential for mutually beneficial operation of standby generation

Current & Evolving Situation Demand Side Management

- DSM is a net negative air emissions alternative to generation
 - It can be a low cost alternative in meeting reserve calls
 - It can reduce peak load generating requirements
- GRU has no active DSM

– DSM is a "Building Block" in the ESPS/CO₂

Current Activities/Next Steps

- Formalizing Team Members and Organization Design
- Developing overall scope & schedule of Power 2020 (est. draft report by 9-30-15)
 - Incorporate ESPS/CO₂
- Identifying internal resources
- Determining Task Assignment for consultant(s)
- Received DEP Construction Permit for 50 MW of peaking power in 2018-19
 - Place holder to establish air emissions cap
- Simulation of alternative scenarios

POWER 2020

